KEY CONCEPT

Each population has a density, a dispersion, and a reproductive strategy.

- Population density is the number of individuals that live in a defined area.
 - Population density is a measurement of the number of individuals living in a defined space.
 - Scientists can calculate population density.

$$\frac{\text{\# of individuals}}{\text{area (units}^2)} = \text{population density}$$

- Geographic dispersion of a population shows how individuals in a population are spaced.
 - Population dispersion refers to how a population is spread in an area.

- There are three types of dispersion.
 - clumped

- There are three types of dispersion.
 - uniform

- There are three types of dispersion.
 - random

- Survivorship curves help to describe the reproductive strategy of a species.
 - A survivorship curve is a diagram showing the number of surviving members over time from a measured set of births.

SURVIVORSHIP DATA			
Age (years)	Deaths	Survivors	% Surviving
0–5	I	35 – 1 = 34	97
6–10	_	34 – 1 = 33	94
11–15	0	33 – 0 = 33	94
16–20	IIII	33 – 4 = 29	83
21–25	I	29 – 1 = 28	80

- Survivorship curves can be type I, II or III.
 - Type I—low level of infant mortality and an older population
 - common to large mammals and humans
 - Type II—survivorship rate is equal at all stages of life
 - common to birds and reptiles
 - Type III—very high birth rate, very high infant mortality
 - common to invertebrates and plants

KEY CONCEPT

Populations grow in predictable patterns.

- Changes in a population's size are determined by immigration, births, emigration, and deaths.
 - The size of a population is always changing.
 - Four factors affect the size of a population.
 - immigration
 - births
 - emigration
 - deaths

- Population growth is based on available resources.
 - Exponential growth is a rapid population increase due to an abundance of resources.

Logistic growth is due to a population facing limited resources.

- Carrying capacity is the maximum number of individuals in a population that the environment can support.
- A population crash is a dramatic decline in the size of a population over a short period of time.

- Ecological factors limit population growth.
 - A limiting factor is something that keeps the size of a population down.
 - Density-dependent limiting factors are affected by the number of individuals in a given area.

- Density-dependent limiting factors are affected by the number of individuals in a given area.
 - predation
 - competition
 - parasitismand disease

- Density-independent limiting factors limit a population's growth regardless of the density.
 - unusual weather
 - natural disasters
 - human activities

KEY CONCEPT

Ecological succession is a process of change in the species that make up a community.

- Succession occurs following a disturbance in an ecosystem.
 - Succession regenerates or creates a community after a disturbance.
 - a sequence of biotic changes
 - damaged communities are regenerated
 - new communities arise in previously uninhabited areas

- There are two types of succession.
 - primary succession started by pioneer species

- There are two types of succession.
 - secondary succession started by remaining species

