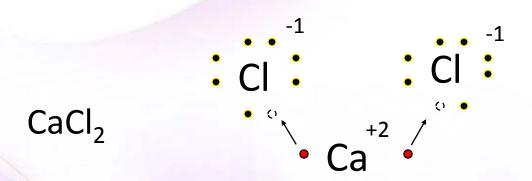
- 1. What types of elements occupy space in groups 1 and 2?
- 2. How many valence electrons do these groups have, respectively?
- 3. What will their ionic charges be, respectively, if they lose their valence electrons?
- 4. Metals like to ______ electrons.
- 5. Non-metals like to ______ electrons.
- 6. What electrons do the bonding?

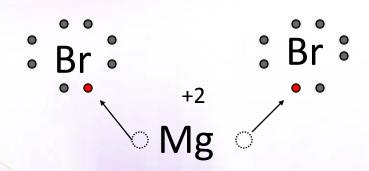
WHY DO ATOMS BOND?

Increases stability of the atoms


Group 1 and 2 metals transfer electrons to Group 16 and 17 nonmetals to create ionic bonds.

Metals lose electrons & nonmetals gain electrons to achieve noble gas structure!

BONDING


A bond forms when... two atoms gain, lose, or share electrons in their outer energy levels.

Calcium ion will give up its outer electrons to both chlorine atoms

IONIC BOND

Form between two oppositely charged ions (metal to nonmetal) one gains and one loses electrons (electron transfer)

MgBr₂

Strong bonds form

COVALENT BOND

Form when atoms *share* one or more pairs of electrons = nonmetals to nonmetals

Oxygen only needs two electrons so hydrogen shares its one valence electron so that both atoms fill their outer shells.

Weaker bonds form

COVALENT BOND (CON'T)

Nonmetals have fewer electrons than they need to have stable outer shell

Ex. Group 7 can bond with other Group 7 by sharing 1 electron from each atom

Both atoms get to 8 electrons = HAPPY!!

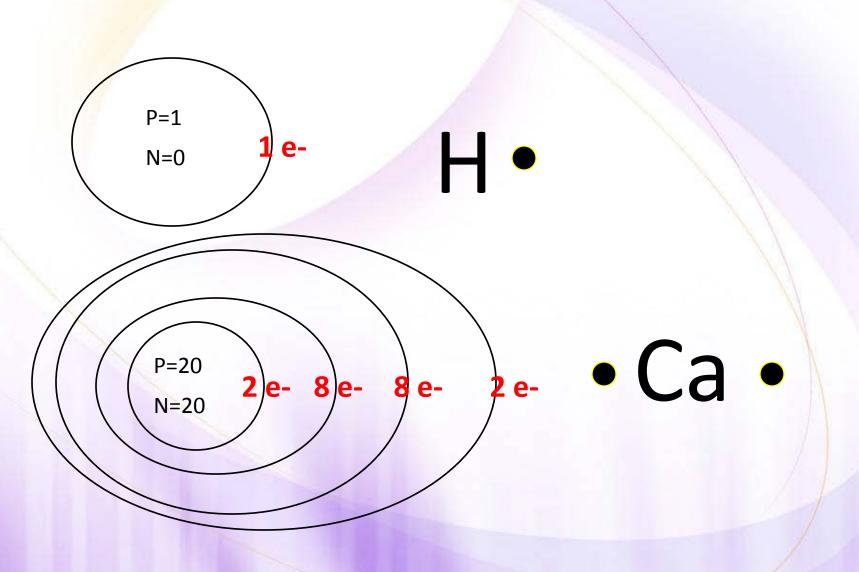
This sharing forms 1 covalent bond made of 2 electrons & the molecule is stable!

Videos!

Short Video on NaCl and Water

Longer Video on Bonding

Hindenburg Disaster


An electron-configuration notation in which only

the valence electrons of an atom of a particular element are shown

Indicated by dots placed around the element's symbol

*these are the
electrons
involved in the
formation of
covalent bonds

on notation in winch only			
Number of Valence Electrons	Electron-dot Notation	Example	
1	X*	Na*	
2	.X*	.Mg	
3	. x .	. B*	
4	.X*	\mathbf{c}	
5	.x:	.N.	
6	: x :	:0:	
7	: X :	: F :	
8	: x :	Ne:	

- 1. Determine # of valence electrons
- 2. Correctly place the electrons around symbol

Nitrogen: N

Hydrogen: H

Ammonia: NH₃

ACTIVITY TIME!

Ionic vs. covalent.. Which will win???

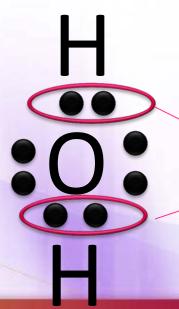
Looking at the difference between sugar and salt.

WEDNESDAY 10/7 - BELLRINGER

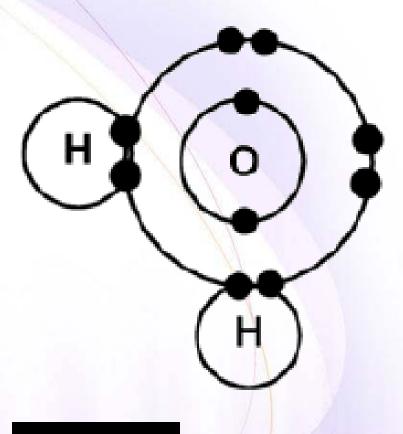
- 1. Table salt (NaCl) has what kind of bond?
- 2. Table sugar (sucrose, C₁₂H₂₂O₁₁) has what kind of bond?
- 3. When heated, what happened to the bonds in sugar?
- 4. When heated, what happened to the bonds in salt?
- 5. Provide the electron dot structure for Barium (Ba), Iodine (I), and Cesium (Cs).

ELECTRON DIAGRAMS

1. Electron Dot Diagram:


Hyd<mark>rog</mark>en: H

H۰


Oxygen:

Water: H₂O

2. Pictorial Diagrams:

Covalent bonds!

THURSDAY 10/8 - BELLRINGER

EOC WORKBOOK

Pg. 36 (all)
Pg. 37 (all)

What happens if it is not the neutral element..

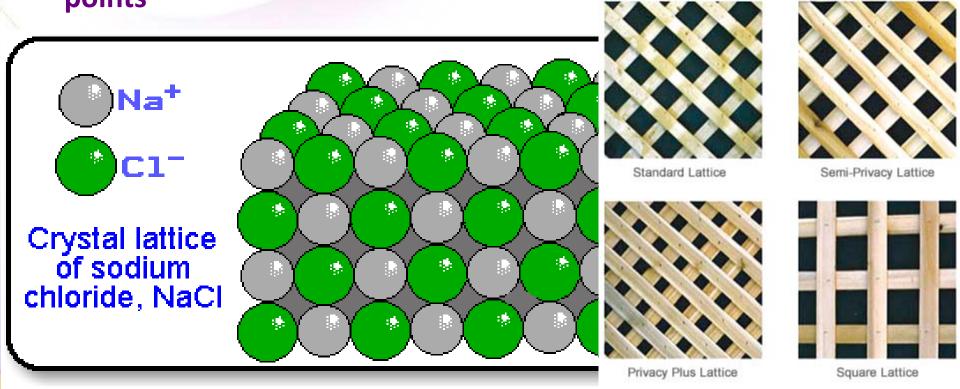
But the ion??

Na

CI

Mg

BONDS


- Covalent Structures: make molecules and SHARE ELECTRONS
 - \bigcirc Example: H_2O , CO_2 , $C_{12}H_{22}O_{11}$

- Onic Structures: make ionic crystals and TRANSFER ELECTRONS
 - Example: NaCl, KI, CaF₂

IONIC STRUCTURE

- A. When positive and negative ions surround each other, they form tightly packed structures called ionic crystals or crystal lattices
- Substances with network (ionic) structures are usually strong solids with high melting and boiling points

Substances made of molecules have lower melting and boiling points

Salt: Up close and personal

Make some observations of salt under a microscope!!

- http://www.sciencenetlinks.com/lessons.php?Benchm arkID=4&DocID=173
- http://www.sciencenetlinks.com/lessons.php?BenchmarkID=4&DocID=173
- http://www.mos.org/sln/sem/sem.html

SECTION 1 REVIEW Pg. 606 # 4, 5

© EOC REVIEW
Pg. 626 # 4-6, 11, 14, 17, 18

EOC WORKBOOK!!!

Pg. 38 (all)
Pg. 39 (all)