TYPES OF REACTIONS

1. Synthesis: two substances combine to form another substance

$$A + B \rightarrow AB$$

2. Decomposition: one substance breaks down or decomposes to two or more substance

$$AB \rightarrow A + B$$

3. Single Displacement: one element replaces another

$$A + BC \rightarrow AC + B$$

4. Double Displacement: positive ion of one compound replaces positive ion of another

$$AB + CD \rightarrow AD + CB$$

NAME THAT EQUATION!

1. $4Al + 3O_2 --> 2Al_2O_3$ Synthesis

2. $CaOH)_2$ --> $CaO + H_2O$ **Decomposition**

3. $Zn + CuSO_4 --> ZnSO_4 + Cu$ Single Displacement

4. $Cl_2 + 2KBr --> 2KCl + Br_2$ Single Displacement

5. BaCl₂ + Na₂SO₄ --> 2NaCl + BaSO₄ Displacement

6. $2H_2 + O_2 \longrightarrow 2H_2O$ Synthesis

TUESDAY 10/20 - BELLRINGER

Label the following equations: (4types)

2. Fe + $O_2 \rightarrow Fe_2O_3$

1.
$$Zn + HCl \rightarrow ZnCl_2 + H_2$$
 Single Displacement

Synthesis

3.
$$SiO_2 + HF \rightarrow SiF_4 + H_2ODouble Displacement$$

4. FeS + HCl
$$\rightarrow$$
 H₂S + FeCl₂Double Displacement

COMMON GAS LAB!

You will be conducting reactions to produce 5 different common gases and observe their chemical and physical properties.

A.
$$NaHCO_3 + HCI \rightarrow NaCI + H_2O + CO_2$$

B.
$$Cu + 4HNO_3 \rightarrow Cu(NO_3)_2 + H_2O + 2 \frac{NO_2}{}$$

C.
$$NH_4CI + NaOH \rightarrow NaCI + H_2O + \frac{NH_3}{}$$

D.
$$H_2O_2 \rightarrow 2H_2O + \frac{O_2}{}$$

E.
$$Mg + 2HCl \rightarrow MgCl_2 + \frac{H_2}{}$$

BALANCING CHEMICAL

EQUATIONS EQUATIONS EQUATIONS

CHEMICAL REACTIONS

- Chemical reaction is the process of changing reactants to products by a chemical change
- Chemical reactions are symbolized by
- (s) solid; (l) liquid; (g) gas; (aq) aqueous are the physical states of the reactants and products

EQUATIONS SHOW...

- The reactants which enter into a reaction.
- The products which are formed by the reaction.
- The amounts of each substance used and each substance produced.

$$\underline{2}$$
 Mg_(s) + \underline{O} _{2(g)} \rightarrow $\underline{2}$ MgO(s)

SUBSCRIPTS AND COEFFICIENTS

- We use <u>subscripts</u> to balance compounds
- CaCl₂
- subscripts cannot be changed

We use <u>coefficients</u> to balance equations

■
$$\frac{2}{2}$$
 NaCl + $\frac{1}{2}$ Ca(OH)₂ \rightarrow $\frac{2}{2}$ NaOH + $\frac{1}{2}$ CaCl₂

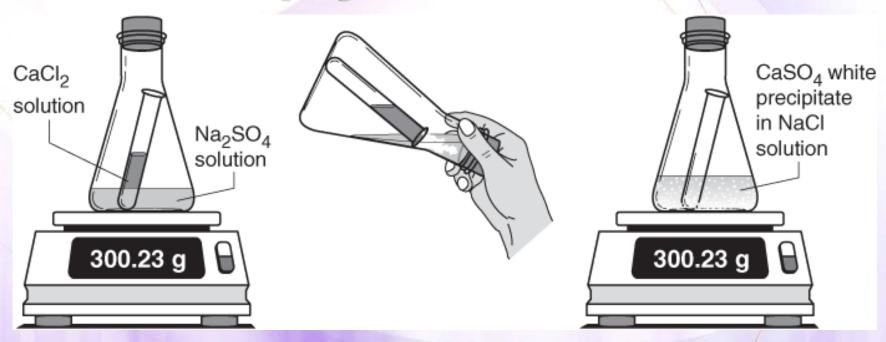
BALANCING EQUATIONS!

Goal: to get the same number of atoms on both sides of the equation

$$_AI + _O2 \rightarrow _AI2O3$$

$$_$$
 NaCl \rightarrow $_$ Na + $_$ Cl₂

$$_$$
 Li + $_$ H₂O \rightarrow $_$ LiOH + $_$ H₂


WHAT'S THE POINT?????

A. A balanced chemical equation represents the process of a chemical reaction in which atoms are rearranged but not created or destroyed.

B. By balancing chemical equations, you show that mass is conserved... <u>Law of Conservation of Mass!</u>

Law of Conservation of Mass

Mass is neither created nor destroyed in an ordinary chemical or physical reaction

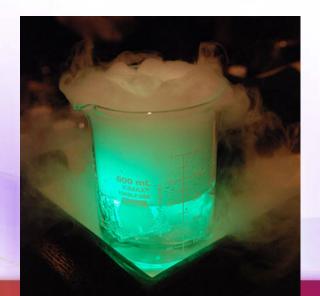
Mass of Reactants

Mass of Products

LAB:

Looking at the...

Law of Conservation


of mass!!!

Chemical and Physical Changes

Chemical Reactions and Equations:

What do they mean? What do they show?

MONDAY 10/19 - BELLRINGER

EOC WORKBOOK Pg. 41 (all)

- A. An exothermic reaction _____ heat.
- B. An endothermic reaction ______ heat.
- C. (A + B → AB) is an example of a _______
 reaction

ENERGY CHANGES IN REACTIONS

During any chemical reaction, there is an energy change.

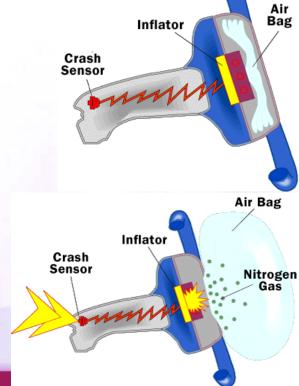
1. Exothermic reaction: heat is released during the reaction, the area becomes warmer

2. <u>Endothermic reaction:</u> heat is absorbed during the reaction, the area becomes cooler

Everyday Exothermic and Endothermic

Reactions

Instant Cold **Packs**



Instant heat packs

•AIRBAGS!

The airbag's inflation system reacts sodium azide (NaN3) with potassium nitrate (KNO3) to produce nitrogen gas. Hot blasts of the nitrogen inflate the airbag.

Videos

Exothermic vs. Endothermic

Endothermic Reaction

Equation Terms

- A. Reactants: original substances entering into a chemical rxn
 - what you started with, on the left side

- B. <u>Products:</u> the resulting substances from a chemical rxn
 - what you end with, on the right side

Reactants --> Products

Endothermic vs. Exothermic

Calcium Chloride vs. Sodium Bicarbonate... who will win the temperature war???

Turn into me: Half sheet of paper

MONDAY 10/26 - BELLRINGER

Balance the following equations:

1.
$$\underline{Zn} + \underline{HCl} \rightarrow \underline{ZnCl}_2 + \underline{H}_2$$

2. __Fe + __
$$0_2 \rightarrow$$
 __Fe $_20_3$

3.
$$SiO_2 + HF \rightarrow SiF_4 + H_2O$$

4.
$$_$$
FeS + $_$ HCl \rightarrow $_$ H₂S + $_$ FeCl₂

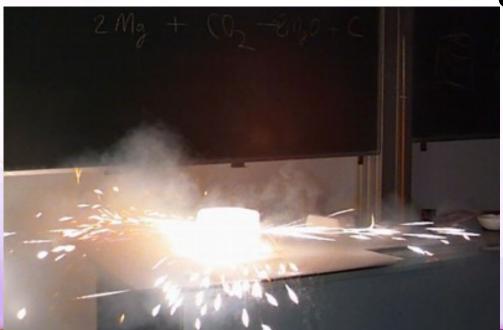
5.What is the overall goal of balancing equations?

TUESDAY 10/27 - BELLRINGER

Balance the following equations:

$$1. _S_8 + _O_2 \rightarrow _SO_2$$

2.
$$_$$
 HgO \rightarrow $_$ Hg + $_$ O₂


3.
$$BeCl_2 + KOH \rightarrow Be(OH)_2 + KCI$$

4.
$$_S_8 + _O_2 \rightarrow _SO_3$$

5.
$$H_3PO_4 + Mg(OH)_2 \rightarrow Mg_3(PO_4)_2 + H_2O$$

Reaction Rates!

Reactions occur when particles of reactants collide with energy

FACTORS AFFECTING REACTION RATES

- 1. <u>Temperature</u>: higher temperature, reaction rate increases
 - 1. Particles moving faster, more collision between particles

- 2. <u>Concentration</u>: when reactants are more concentrated, rate of reaction increases
 - 1. More particles mean more collisions

FACTORS AFFECTING REACTION RATES

3. <u>Surface Area</u>: more surface area, reaction rate increases

4. <u>Catalyst</u>: presence of catalyst speeds up reaction without being permanently changed

[Inhibitor: slows down a reaction]

Video!